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We consider the nonlinear coupled hydroelastic problem of a general curved and twisted
#exible slender structure (i.e. #exible riser, cable system, "sh}farm net system, towed arrays, etc.)
embedded in a nonuniform #ow "eld such as the ocean environment; the #ow direction is
arbitrary, relative to the axis of the slender structure. The motion of the elastic structure is
coupled with the hydrodynamic loads acting on the slender structure by the ambient #ow "eld.
An important input for such hydroelastic problems is the computation of the hydrodynamic
loading per unit length experienced by the slender body. A rigorously derived improvement for
the inertial loading per unit length over the commonly used Morison-type semi-empirical force
(originally obtained for straight long structures in a uniform stream) is used. The structure is
also allowed to undergo small (yet "nite) de#ections from its original reference central-line, due
to a particular model of intrinsic elasticity governed by a corresponding nonlinear PDE, which
corresponds to the well-known Kirchho! rod elastic model. The system of coupled hydroelastic
equations is investigated in order to derive analytically the in#uence of the hydrodynamic
loading in a uniform stationary stream on the nonlinear stability of the straight rod. It is found
that the presence of an ambient stationary stream decreases the critical parameters (critical
twist) of the buckling phenomenon which is known to exist for the same rod when placed
in a vacuum. Also revealed is a new type of stability loss, which is a!ected by viscous e!ects.
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1. INTRODUCTION

THE STUDY OF SLENDER ELASTIC STRUCTURES is a subject of continued scienti"c and mathema-
tical interest. The problem is much more di$cult when the structure is assumed to be
embedded in an ambient stream of a heavy liquid with a certain rheology. Among the most
important hydroelastic applications one can mention, for example, the writhing and
buckling of submerged mooring and telephone cables (Coyne 1990), and the stability of
#oating structures such as o!shore platforms, ships and buoys in the ocean [e.g. Zhu et al.
(1999)], etc.

The history of the study of slender elastic structures started with the paper of Kirchho!,
later extended by Love (1927). They studied the so-called Kirchho! rod model, in which
a twist and stretching of the structure are both included in the formulation in a direct way.
Their classical approach is based on the so-called &&kinetic analogue'' (Love 1927), and
mainly treats the problem of the classi"cation and stability of equilibrium positions of
structures in vacuo (Goriely & Tabor 1997).

In order to treat hydroelastic problems involving slender structures, one can introduce
the so-called &&hydrodynamic line'' limit (Rainey 1995; Galper et al. 1996). In this limit the
structure is considered as an e!ectively 1-D structure embedded in a 3-D liquid stream.
Correspondingly, the intrinsic di!erential geometry of this 1-D shape should be connected
with the #ow description of the ambient stream. This poses a nontrivial problem of
0889}9746/00/101089#12 $35.00/0 ( 2000 Academic Press
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determining the cross-sectional hydrodynamic loading acting on a slender deformable
structure in the limit of the hydrodynamic line (Galper & Miloh 1999).

Traditionally (Zhu et al. 1999), the corresponding expression for the loading has been
used in a partly empirical form based on the so-called &&Morison formula'' (Sarpkaya
& Isaacson 1981; Lighthill 1986). The Morison expression consists of two parts accounting
for the inertial (potential) forcing and viscous drag, respectively. An exact expression for the
cross-sectional loading in a potential stream has only recently been derived by Galper
& Miloh (1999). This derivation enables us to conduct a rigorous analytical treatment of the
hydroelastic problem of a slender structure for the case of an inviscid stream. For an
arbitrary, viscous, nonuniform ambient #ow "eld, an exact solution is not available.

As a next step, one can then add the hydrodynamic loading to the right-hand side of the
corresponding linear (or, in general, nonlinear) hydroelastic equations governing the dy-
namics of the structure immersed in a #uid. In this way, and even for a linear elastic model,
one obtains a system of nonlinear PDEs with a distribution of contact forces.

We choose the Kirchho! rod to model the dynamics of immersed cables. This model is
fully consistent with the above-mentioned hydrodynamic-line limit, in the sense that it is of
the same order in the characteristic small parameter (namely, the slenderness of the
structure).

In this paper we investigate the stability and buckling phenomenon of a straight rod
embedded in a uniform ambient stream. It is well known that a corresponding buckling
phenomenon occurs for a Kirchho! rod in vacuo (Love 1927). The straight rod bifurcates
into a helical con"guration, and helical equilibrium con"gurations lose their stability by
means of coiling. The stability problem of various types of buckling is considered in
a number of recent papers of Goriely & Tabor (1997, 1998), treating mainly the linear
stability of some equilibrium con"gurations based on the neutral curve consideration.
Following this methodology, we determine the in#uence of a uniform stream on the critical
bifurcation parameters for the buckling of a straight Kirchho! rod. We "nd that the stream
decreases the corresponding critical parameters of the bifurcation, when compared with the
corresponding values in vacuo, leading to a destabilization of the rod.

The paper is organized as follows: In Sections 2 and 3 we set up the generalized
equations which govern the dynamics of a Kirchho! rod lying in an ambient arbitrary
stream. The #ow}structure interaction problem is treated within a potential #ow frame-
work. In Section 4 we consider a special case of a uniform ambient stream. The correspond-
ing linear stability perturbation technique is next developed in Sections 5 and 6. It is then
applied to the case of a straight rod which is subject to stretching and a constant twist. Exact
expressions for the new critical bifurcation parameters are established and the in#uence of
a uniform viscous drag on the rod stability is also discussed in Section 7.

2. A KIRCHHOFF ROD IN VACUO

We choose to model a cable by a slender elastic rod which satis"es the so-called Kirchho!
rod theory [see Coleman et al. (1993)]. According to this theory the strains are assumed
small, when compared with the undisturbed con"guration, and so are the nondimensional
thickness, curvature and twist. Thus, the Kirchho! theory is correct up to the second order
in these parameters. The rod is considered to be inextensible, which is in full correspondence
with the "rst-order theory. Kinematically speaking, this model captures in a fairly good
manner the essential long-wave properties of the elastic structure.

The rod ¸, of a circular cross-section S : r!a"0, is speci"ed by its curved time-
dependent smooth central-line C (t). This centreline can be represented by the position
vector X(s, t) of a point on C(s, t), whereas s is the natural parameter (arc-length) of the
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inextensible rod. Thus, one can introduce a unit vector H(s, t) tangent to the curve C(s, t)
given by

LX(s, t)

Ls
"H (s, t), DHD"1. (1)

We also choose two arbitrary unit mutually orthogonal vectors d
1
(s, t) and d

2
(s, t) in such

a way that the triad H, d
1
, d

2
forms a right-handed orthonormal frame along C(s, t). One

can consider the triad (for a "xed t) as if it were a rigid body, rotating along the central
curve. In this case, one can interpret s as time which is the nature of the well-known
Kirchho! kinetic analogue (Coleman et al. 1993). This &&rotation'' can be described with the
help of the &&Darboux vector'' X [see, for example, Section 5 of Dubrovin et al. (1984)],
where X"(i

1
, i

2
, q), i

1
and i

2
representing the curvatures of the centre line when

projected onto planes normal to d
1
, d

2
, respectively, and q representing the twist. Thus, one

obtains

LH
Ls

#X''H"0,
Ld

1
Ls

#X''d
1
"0,

Ld
2

Ls
#X''d

2
"0. (2)

If one denotes by f (s, t) and m (s, t) the density of the contact internal force and moment per
unit length, respectively (acting in a direction orthogonal to H(s, t)), the Kirchho! equations
obtain the conservation form for both linear and angular momentum, i.e.

Lf (s)

Ls
"o

b P
S

L2X3
Lt2

dS, (3)

Lm(s)

Ls
#H''f"o

b P
S

r'''
L2X3
Lt2

dS, (4)

where r(s, t) denotes the position vector of a point on the cross-section with respect to the
axis, X3 ,X#r and o

b
denotes the density of the rod.

Equations (3) and (4) should also be augmented by a proper constitutive relationship
connecting the moment distribution m (s, t) with the Darboux vector X of the system. When
we invoke this additional relationship, equations (3) and (4) form a system of nine equations
with nine unknowns, namely the Darboux vector, as well as the force f (s, t) and moment
distributions m(s, t) (Goriely & Tabor 1997).

3. FLUID } STRUCTURE INTERACTION

Let a cylindrical structure with a central-line C(s, t) be placed in a nonuniform ambient
unsteady #ow "eld V(X, t)"$/(X, t) with a constant #uid density o

f
. The corresponding

expressions for the hydrodynamic force and moment exerted on the deformable cylinder are
given below, in a moving (body-"xed) coordinate system with an origin coinciding instan-
taneously with its centre of mass.

We denote the deformation velocity of a point s on C(s, t) by U(d)(s, t). Clearly, for
a structure with a "xed centroid location and "xed directions of its main axes

U(d)(s, t)"
LX (s, t)

Lt
. (5)

Correspondingly, the deformation velocity <(d)(s, r, t) of a point (s, r) on the surface
¸ (Galper & Miloh 1995) is given by

<(d)(s, r, t)"n (s, r, t) 'U(d)(s, t), (6)

where n(s, r, t) is the normal to the deformable surface ¸.
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One can introduce now the hydrodynamic loading per unit length, F3 (s, t), given by

F (t)"P
~H

H

F3 (s, t) ds, (7)

where FI (s, t) is aligned in a direction orthogonal to H (s, t) and F (t) is the total hydro-
dynamic force acting on the structure with a total length 2H.

The dynamic hydroelastic Kirchho! equations replacing equations (3) and (4) which
account for the presence of an ambient #ow "eld should be augmented now, by including
a corresponding hydrodynamic loading per unit length, i.e.

Lf (s)

Ls
#F3 (s, t)"o

b P
S(s)

L2X3
Lt2

dS, (8)

Lm(s)

Ls
#H''f"o

b P
S(s)

r''
L2X3
Lt2

dS. (9)

Note that the equation of conservation of angular momentum, equation (9), is the same as
equation (4) and that the hydrodynamic loading enters into the formalism only through the
linear momentum equation (8).

Consider next the case where the characteristic-length scale l of the nonuniformity of the
ambient #ow "eld, V, is much larger than the characteristic length scale DSD of the cylinder
cross-section (the so-called &&weakly nonuniform'' "eld approximation). In this case, there
exists a small parameter which has the sense of a ratio between these two scales, namely

e&
DSD
l

@1. (10)

Furthermore, we assume that the curvature of the structure is small enough (i.e.
max

s
i (s)a"O(e)), which corresponds to the general limiting procedure of the &&hydro-

dynamic line'', where all parameters are considered as "xed as the cross-section radius
a tends to zero (Rainey 1995). Note that we do not impose here any restrictions on the
torsion and on the s-derivatives of either curvature or torsion of the structure. The
hydrodynamic loading per unit length is calculated to the leading order in the small
parameter e. Such an approximation is fully consistent with the "rst-order approximation
used to derive the elastic model of the Kirchho! rod.

The hydrodynamic loading F3 (s, t) can be split into three parts, namely

F3 (s, t)"F (s, t)#F(d)(s, t)#F(q)(s, t). (11)

Here F (s, t) is the hydrodynamic loading on the &&frozen'' rod, imposed by the ambient
stream. The term F(d)(s, t) results from the interaction between the pure deformation of the
rod with a nonzero ambient #ow "eld. Finally, F(q)(s, t) represents the cross-sectional
loading due to a pure deformation in a quiescent #uid.

One can specify the following expression for the hydrodynamic loading (Galper & Miloh
1999) in terms of the acceleration of the ambient #ow "eld a,DV/Dt :

F(s)D
T
"2o

f
paD

T
!o

f
p<#

LV

Ls K
T

#o
f
p

L
Ls A<#V!

1

2
(DVD2#<2# )HBK

T

#O (e2 log e). (12)

It can be shown that the next order terms on the right-hand side of equation (12) are of
O(e2 log e) (Galper et al. 1996). Here the substantial time derivative operator is

D

Dt
"

L
Lt
#<a+a#<#

L
Ls

#O (e2). (13)
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Further, p denotes the cross-sectional area, the operator D
T

denotes the projection of
a function on the corresponding cross-section plane, and we imply a summation over
a"1, 2 in equation (13). Equation (12) reduces exactly to the expressions presented in
Rainey (1995) for the force distribution acting on a straight cylinder (i.e. for X"0).

It can be also shown in a similar manner (Galper & Miloh 1999) that the additional
loading on a curved slender structure, due to deformation, can be written as

F(d)(s, t)"o
f
p ;(d)#

LV

Ls K
T

!o
f
p

L
Ls

(<#(s)U(d)(s)) K
T

#o
f
p (U(d)(s) 'V(s))

LH
Ls

. (14)

We recall that, according to the Kirchho! rod model, the cross-section stays orthogonal to
the tangential vector, which implies that U(d)(s) 'H (s)"0.

We emphasize here the local character of the loading per unit length in the case of
a curved structure with a constant cross-section. In this case, the cross-section loading
depends only on variables related to the same cross-section. Note that for a slender
structure with a variable cross-section the corresponding expressions for the loading are
generally nonlocal (Galper & Miloh 2000).

In order to estimate the e!ect of viscous #ow separation for a cable (modelled as
a Kirchho! rod) in a marine environment, one can calculate the corresponding viscous drag
distribution F(v)(s, t) using the simple Morison formula (Zhu et al. 1999). It is given by

F(v)(s, t)"!1
2

po
f
Du(s, t)D(C

N
u (s, t)D

T
#C# (u(s, t) 'H)H), (15)

where u (s, t),(V (s, t)!U(d)(s, t)) represents the relative velocity of the cross-section, and
C

N
, C# are the corresponding normal and tangential drag coe$cients, respectively. Note

that within the inextensible Kirchho! rod model only the normal loadings are accounted for
and hence only the normal part of equation (15) contributes to the force loading.

Finally, using equations (8) and (9), where the integrals on the right-hand side are
calculated up to the leading order, we obtain the following generalized hydro-elastic
Kirchho! equations of motion (after taking the s-derivative of equation (8) and using
equation (1)):

L2

Ls2
f (s)#

L
Ls

(FD
T
(s)#F(d)D

T
(s)#F(v)D

T
(s))"p (o

b
#o

f
)
L2H
Lt2

, (16)

Lm(s)

Ls
#H''f"o

b
I Ad1''

L2d
1

Lt2
#d

2
''

L2d
2

Lt2 B , (17)

where I"na4/2 denotes the moment of inertia of a rod cross-section about a centred axis in
the plane of the cross-section and the various force loadings F (s), F(d) (s) and F(v)(s) are given
by equations (12), (14) and (15), respectively. It is also remarked that the additional term
po

f
L2H/Lt2 on the right-hand side of equation (16), which represents the cross-sectional

added-mass, arises from the hydrodynamic loading term F(q) acting on the deformable
structure in a quiescent #uid.

For a nonuniform #ow "eld the hydrodynamic loading depends directly on X(s, t)
through the terms V(X (s, t)). This fact increases the order of the generalized hydro-elastic
Kirchho! equations in comparison with equations (4) and (11). These equations are de"ned
up to rigid-body motions in space and are, therefore, independent on X (s, t). Instead, they
depend on s- and t-derivatives of X(s, t). Only in the case of a uniform #ow-"eld are the
generalized Kirchho! equations (16) and (17) of the same order as equations (4) and (11).
When these equations are augmented by a constitutive relationship (see below), they form
a closed system of nonlinear PDEs.
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As shown in Section 4, the additional term on the left-hand side of equation (16) leads to
a destabilization of the stationary (equilibrium con"gurations) solutions of equations (16)
and (17). Thus, for example, an equilibrium rod con"guration embedded in an ambient
(even uniform) #ow "eld tends towards spatial chaos (Coleman et al. 1993). Also, a straight
elastic rod placed in a constant (or even nonuniform) stream will experience a "rst
bifurcation of its shape at a smaller critical value of twisting moment then the correspond-
ing value in vacuo.

4. UNIFORM FLOW-FIELD

Let us consider "rst the case of a rod embedded in a stationary, uniform #ow-"eld V"

constant. For this special case, equation (12) is replaced by

F
6/*

(s)"o
f
p

L (<#V!1
2

(D<D2#<2# )H)

Ls
. (18)

Noting further that F
6/*
'H"0, we conclude that

F
6/*

(s)D
T
"F

6/*
(s). (19)

Hence,

L (F
6/*

D
T
)

Ls
"o

f
p

L2(<#V!1
2

(D<D2#<2# ) H)

Ls2
. (20)

The deformation loading given by equation (14) is next simpli"ed for a stationary uniform
#ow "eld to

F(d)
6/*

(s)"!o
f
p A

L (<#U(d))

Ls
!(U(d) 'V)

LH
Ls B

"!o
f
p

L(<#U(d)!(U(d) 'V)H)

Ls
!o

f
p A

LH
Lt
'VBH. (21)

Here also F(d)
6/*

(s)D
T
"F(d)

6/*
(s) and thus

LF(d)
6/*

(s)

Ls
"!o

f
p

L2(<#U(d)!(U(d) 'V)H)

Ls2
!o

f
p

L
Ls CA

LH
Lt
'VB HD . (22)

It is convenient at this stage to introduce the following scaling:

sPS
I

p
s, tPS

I

p
1

<
e

t, fPpEf, VP<
e

V, mPJpIEm, (23)

where E is the Young's modulus, and the elastic wave velocity is de"ned as

<
e
,JE/o

b
. (24)

Generally, a typical dimensionless velocity in the ocean satis"es <@1.
The generalized Kirchho! equations for an elastic rod in a uniform stationary stream can

be now expressed in terms of these dimensionless variables as

L2f (s)
Ls2

#k
L2(<#V!1

2
(D<D2#<2# ) H)

Ls2
#

L (F(d)
6/*

#F(v))

Ls
"(1#k)

L2H
Lt2

, (25)

Lm (s)

Ls
#H''f"Ad1''

L2d
1

Lt2
#d

2
''

L2d
2

Lt2 B , (26)
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where F(d)
6/*

is given by the dimensionless form of equation (21) and k,o
f
/o

b
.

Complementing equations (25) and (26), we introduce the following linear constitutive
relationship:

m"X
1
d
1
#X

2
d
2
#CX

3
H, (27)

where C is a certain constant (2
3
4C41) depending on the rod elasticity (Goriely & Tabor

1997). We then obtain a closed system of di!erential equations.
It is known that a &&dry'' rod has a number of stationary equilibrium con"gurations

in vacuo, among which the simplest ones are straight, circular and helicoidal con"gurations
[see Nizette & Goriely (1999) for a detailed classi"cation]. Consider for example a stretched
straight rod which is subject to a constant density twist c and a constant dimensionless
tension P2 acting along the rod (de"ned as a squared quantity to emphasize its positive
nature). This can be described in our dynamic variables by

f (0)"(0, 0, P2), X(0)"(0, 0, c), (28)

which has been shown to be a solution of equations (25)}(27). Indeed, the cross-sectional
inertial loading on a straight rod placed in a uniform #ow "eld is equal to zero, whereas the
viscous force is constant and thus has a vanishing s-derivative.

5. THE BUCKLING PHENOMENON

We now apply the generalized Kirchho! equations (25)} (27) to analyze the buckling
problem of a straight rod which is subject to the constant tension and twist given by
equation (28). It is well-known (Goriely & Tabor 1997) that the "rst bifurcation from
a straight to a helicoidal shape in vacuo, occurs when (for, say, "xed P)

c5c
#3
"

2P

C
. (29)

The stability of all possible equilibrium positions can be considered along two complement-
ary lines. First, the stability analysis can be based on a stationary system of the governing
di!erential equations. A more consistent way is to take into consideration the full dynamic
description. In the latter case, the bifurcation criteria can be obtained from the standard
linear stability analysis, by deriving the corresponding neutral stability curve. In this
derivation, the terms which are proportional to a time-derivative of the variables do not
contribute, and hence the deformational loading term in equation (25) does not a!ect the
linear stability analysis.

Let us introduce further the following new variable;

f3,f!
k
2

(DVD2#<2# ) H (30)

through which the conservation statements can be written as

L2f3 (s)
Ls2

#k
L2(<#V)

Ls2
#

L(F(d)
6/*

#F(v))

Ls
"(1#k)

L2H
Lt2

, (31)

Lm(s)

Ls
#H''f3"Ad1 ''

L2d
1

Lt2
#d

2
''

L2d
2

Lt2 B . (32)

Equation (27) remains unchanged. The initial tension in the rod is now written as

f3 (0)"A0, 0, P2!
k
2

(D<D2#<2# )B,(0, 0, R). (33)
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Neglecting all terms with time-derivatives in equations (31), (32) and (27), we "nally obtain
the following governing equations for the equilibrium con"guration:

L2f3 (s)
Ls2

#k
L2 (<#V)

Ls2
#kC

L
D<D2

LH
Ls

"0, (34)

Lm(s)

Ls
#H''f3"0, (35)

where C
L
,1

2
JIpC

N
. Equations (34) and (35) are supplemented by the constitutive relation-

ship (27). Clearly, a straight con"guration, which is given by X(0)"(0, 0, c) with f3 (0) de"ned
in equation (33), is a solution of equations (34), (35) and (27).

6. LINEAR STABILITY: INVISCID CASE

Consider further the linear stability problem in the case where the viscous term in the
Morison formula can be neglected in comparison with the inertial loading term. In order to
construct an appropriate linear stability analysis, we will use a perturbation technique
which was recently developed by Goriely & Tabor (1997). Thus, one can introduce

H"H(0)#e (U''H(0))#O (e2), d
i
"d(0)

i
#e (U''d(0)

i
)#O (e2), i"1, 2, (36)

where e is a small parameter used in the perturbation procedure and d(0)
1

, d(0)
2

and H(0) are
the triad vectors of the undisturbed straight con"guration. The vector U appearing in
equation (36) has the sense of an angular velocity of a rigid triad (d(0)

1
, d(0)

2
, H(0)) due to the

perturbation. In a similar manner, let us de"ne

X"X(0)#e A
LU
Ls

#X(0)''UB , f3"f3 (0)#e(f3 (1)#U''f3 (0))#O (e2). (37)

By introducing equations (36) and (37) into equations (31), (35) and (27), and using equation
(28), we search for real linear solutions of U and f3 (1) in the form

U
i
"eft (Ax

i
e*us#c.c.), fI (1)

i
"eft (Ay

i
e*us#c.c.) for i"1, 2, 3. (38)

After some tedious calculations, one obtains the following expression for the case f"0,
(determining the neutral curve in our linear stability problem) for the variables U and
f3 (1) resulting from equation (31):

(u2#c2) fI (1)
1

#2icu fI (1)
2

!2icuR2U
1
#(u2#c2) RI 2U

2
"0,

2icu fI (1)
1

!(u2#c2) fI (1)
2

#(u2#c2)R2U
1
#2icuRI 2U

2
"0, (39)

where

RI 2,R2#kD<D2sin2 l, (40)

and R is de"ned in equation (33). Here the angle l is the angle between the uniform stream
and the undisturbed straight rod, i.e. V 'H(0)"D<D cos l. Equation (35) also leads to

fI (1)
1

!i(C!2)cuU
1
!(u2#(1!C ) c2) U

2
"0,

fI (1)
2

#(u2#(1!C)c2)U
1
!i (C!2) cuU

2
"0. (41)
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The neutral curve is given next by the vanishing condition of the corresponding determi-
nant, resulting from equations (39) and (41). Thus

K
1 0 !h b

0 1 b h

g 2icu !2icR2 gRI 2

2icu !g gR2 2icRI 2u K"0, (42)

where we introduce the notation

g,(u2#c2), h,i(C!2) cu,
(43)

b,(u2#(1!C ) c2).

To calculate the determinant D (u) given in equation (42), we use the following formula:

det K
AK BK
CK DK K"det (AK ) det (DK !CK BK ). (44)

Thus, using equation (44) one obtains for the neutral curve D (u):

D(u)"(u2!c2)2[c2(C!1)!R2!u2][c2(C!1)!RI 2!u2]"0. (45)

The "rst root of equation (45), given by u"c, does not change the straight con"guration
(due to the fact that X(1)"0 for u"c). Note that this root appears only in the stability
treatment, based on the full dynamic equations (31), (35) and (27), and is absent if one uses
the equilibrium system equations (34), (35) and (27). Hence, the neutral curve is given by the
solution c"c(u) of the following equation:

[c2(C!1)!R2!u2] [c2(C!1)!RI 2!u2]"0. (46)

As in the case of a dry rod, all values of c satisfying c5c
#3

correspond to the instability of
a straight rod con"guration, where c

#3
is de"ned as the solution of

Lc
Lu

"0. (47)

Taking the u-derivative of equation (46) at the critical point given by equation (47), we
"nd that

2u2
#3
"c2 (C2!2C#2)!R2!RI 2. (48)

Substituting this expression back into the u-derivative of equation (46), one obtains the
following quadratic equation for c2

#3
:

0"C2(C!2)c4
#3
!2(C!2)2(R2#RI 2) c2

#3
#(R2!RI 2)2, (49)

which has a unique positive solution given by

c2
#3
"

(C!2)(R2#RI 2)#J(C!2)2(R2#RI 2)2!C2(R2!RI 2)2
C2(C!2)

. (50)

One can rewrite equation (50) also as

c2
#3
"

(J(1!C)R#RI #J(1!C)RI #R )2
C2(2!C)

, (51)
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yielding

c
#3
"$

(J(1!C)R#RI #J(1!C)RI #R )
CJ2!C

. (52)

Expressing equation (52) in terms of the original variables and using equation (33), "nally
leads to

c
#3
"$

1

CJ2!C AS(2!C)P2#
k
2

D<D2 (C#(C!4) cos2l)

#S(2!C)P2!
k
2

D<D2 (C#(4!3C) cos2 l)B . (53)

An elementary analysis of equation (53) shows that the presence of a stream tends to
destabilize the rod, and leads to a smaller value of critical twist compared with the
corresponding critical value in vacuo, given by equation (29). For the case when
DR2!RI 2D"kD<D2 sin2 l@DP2D, the following asymptotic expression for equation (53) is
obtained:

c
#3
"$

2

C AP!

k
2P

D<D2 cos2 lB#O A
D<D2
P2 B . (54)

Clearly, the maximum destabilization e!ect is achieved for a rod placed parallel to
a uniform stream, whereas a stream in the orthogonal direction does not in#uence the
critical bifurcation value given by the dry rod bifurcation result of equation (29).

7. LINEAR STABILITY: VISCOUS LOADING CORRECTION

In an attempt to consider the e!ect of the viscous loading [given by the term
(LF(v)/Ls)"kC

L
D<D2 (LH/Ls)], on the linear stability problem according to equation (31),

one should recalculate the corresponding determinant of equation (42) which de"nes the
neutral stability curve. For this purpose, let us consider the case of a small viscosity
contribution. It can be shown (in a similar manner as in equations (42)}(45)) that

D(u)"det K
!2icu(R2#b)#gh#2cK g(RI 2#b)#2icuh#iuK

g(R2#b)#2icuh!iuK 2icu(RI 2#b)!gh#2cK K"0, (55)

where K,kC
L
D<D2. For small K the root u"c and those given by equation (53) will

change slightly, and hence one can keep only the terms proportional to K in equation (55).
The most interesting qualitative new e!ect due to viscous drag is connected with the "rst
root, u"c. Direct calculations show that this "rst root is changed now to

u"c#dJK#O (K2/P2), (56)

where d"d(c, R2, RI 2) is some parameter. Hence, a straight rod which is subject to viscous
loading given by the Morison equation (15) becomes unstable for any value of applied twist
c and tension P2. It will bifurcate (for a high enough u) to a helical con"guration given by

X(s)"(s,A cos(dJKs), A sin(dJKs)). (57)

For small K (i.e. K@P2), this helical shape is very close to the straight rod con"guration.
The second root, equation (54) is also slightly increased because of the viscous drag, which
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means that the introduction of viscosity in the &&classical'' buckling phenomenon has
a stabilization e!ect.

It is important however to emphasize that an exact extension for the viscous drag term is
not known. Thus, it could be that the new type of viscous instability described by equation
(57), which follows from using a simpli"ed Morison form for the viscous loading, may be
unsuitable for arbitrary curved and twisted con"gurations.

8. SUMMARY

Exact asymptotic expressions are presented for the cross-sectional hydrodynamic loading
exerted on a slender curved deformable structure embedded in an ambient nonuniform
potential stream. Based on these expressions we derive the corresponding asymptotic
hydroelastic equations which govern the deformation of a slender elastic cylindrical body.
These equations may be further simpli"ed in the case of a uniform #ow-"eld and consist of
a closed system of PDEs. We "nd that the inertial loading exerted on a deformable slender
body due to the presence of an ambient stationary stream leads generally to a destabiliz-
ation of the equilibrium shape of the structure. A possible mechanism for such a destabiliz-
ation e!ect (also valid for nonuniform ambient #ow "elds) can be found in the fact that the
rod is compressed by the ambient stream with the help of point pressures applied at the ends
which tends to decrease the e!ective stretching in the rod. Correspondingly it leads to
a smaller value of the critical twist. It is also demonstrated that the inclusion of viscous drag
results in a new type of instability of the rod, which occurs for any twist value. This viscous
destabilization e!ect may be attributed to the selection of an improper physical model for
the viscous loading term.
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